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In this paper we define a new algebra generated by the difference operatorsDq and
Dq−1 with two analytic functionsα(x) andβ(x). Also, we define an operatorM =
J1J2 − J3J4 s.t. all q-hypergeometric orthogonal polynomialsYn(x), x 6= cos(θ ), are
eigenfunctions of the operatorM with eigenvaluesλq[n]q. The choice ofα(x) andβ(x)
depend on the weight function ofYn(x).
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1. INTRODUCTION

It is known that there is a relation between Lie groups and certain special func-
tions (Miller, 1968). Special functions appear as basis vectors and matrix elements
corresponding to a local multiplier representations of Lie groups (Vilekin, 1968).
For example Bessel functions appear in two distinct ways: as matrix elements of a
local irreducible representation ofG(0, 0) and as basis functions for an irreducible
representation of the four-dimensional Lie algebrag(0, 0). So Lie theory gives a
natural setting for an algebraic interpretation of the special functions.

The q-special functions are extensions to a base q of the standard special
functions. A connection betweenq-special functions and quantum algebra has been
established (Gonzalez and Ibort, 1992; Koelink, 1996; Koornwinder, 1992, 1994).
In this case one considers matrix elements of operators built withq-exponentials of
operators; these elements turn out to be expressible in terms ofq-hypergeometric
series. Alsoq-special functions appear as the basis of irreducible representations
of quantum algebras.

In this paper, in analogy with the Lie theoretic treatment of standard functions,
we suggest a new approach to studying the relation between quantum groups
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and q-special functions we consider a new algebra generated by the operators
J1, J2, J3, J4, we call it Dq-algebra. On theDq-algebra we will define a new
operatorM = J1J2− J3J4 such that allq-hypergeometric orthogonal polynomials
Yn(x), x 6= cos(θ ), are eigenfunctions of the operatorM with eigenvaluesλq[n]q,
that is

MYn = λq[n]qYn,

where the quantum number [n]q is defined by

[n]q = 1− qn

1− q
.

We consider the operatorM as aq-revised form of the Casimir operator in the
algebraDq. Also the choice ofJ1 andJ3 will depend on the weight function ofYn

but J2 andJ4 are the difference operatorsDq andDq−1 (respectively).

2. BASIC CONCEPTS

Theq-shifted factorials (a; q)k (theq-extension of the Pochhammer-symbol
(a)k) is defined by

(a; q)k =
k−1∏
i=0

(1− aqi ),

with the following properties

(qx; q)n = (1− qnx)

(1− x)
(x; q)n,

(q−1x; q)n = (1− q−1x)

(1− qn−1x)
(x; q)n,

(q; q)n−r = (−1)r q(r
2)−nr (q; q)n

(q−n; q)r
.

Also

(a; q)∞ =
∞∏

i=0

(1− aqi ).

The basic hypergeometric series is defined by (Koekoek and Swarttouw, 1994)

rϕs

a1, . . . , ar

|q; x

b1, . . . , bs

 = ∞∑
k=0

(a1, . . . , ar ; q)k

(b1, . . . , bs; q)k

(
(−1)kq

k
2 (k−1)

)1+s−r xk

(q; q)k
,
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where

(a1, . . . , ar ; q)k =
r∏

i=1

(ai ; q)k.

The basic hypergeometric seriesrϕs is a polynomial inx if one of ai equalsq−n,
n is a nonnegative integer. Otherwise the radius of convergence ofrϕs is

ρ =


∞, if r < s + 1

1, if r = s+ 1

0, if r > s + 1

The classical exponential functionex can be expressed in terms of the hy-
pergeometric functionsex = 0F0( – ; x– ) this function has two different natural
q-extension denoted byeq(x) andEq(x) defined by

eq(x) = 1ϕ0

0

|q; x

–

 = ∞∑
k=0

xk

(q; q)k
= 1

(x; q)∞
,

and

Eq(x) = 0ϕ0

–

|q; x

–

 = ∞∑
k=0

q(k
2)xk

(q; q)k
= (−x; q)∞,

wherex ∈ C, |x| < 1, and 0< q < 1. Also eq(x) and Eq(x) can be considered
as formal power series in the formal variablex. They have the following
properties:

eq(x)Eq(−x) = 1,

eq(qx) = (1− z)eq(x),

Eq(x) = (1+ x)Eq(qx),

eq(x) = (1− q−1x)eq(q−1x),

Eq(q−1x) = (1+ q−1x)Eq(x),

eq(qnx)Eq(−x) = (x; q)n,

eq(x)Eq(−qnx) = 1/(x; q)n,

limq→1 eq((1− q)x) = limq→1 Eq((1− q)x) = ex.
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3. THE Dq-ALGEBRA

Definition 3.1. Theq-difference operatorsDq andDq−1 are defined by

Dq±1 f (x) =


f (x)− f (q±1x)

x(1− q±1)
, x 6= 0

d f (0)

dx
, x = 0

where

lim
q→1

Dq±1 f (x) = d f (x)

dx
.

The twoq-exponentialseq(x) and Eq(x) are eigenfunctions of theq-difference
operatorsDq andDq−1 (respectively) where

Dqeq(x) = 1

1− q
eq(x),

Dq−1 Eq(x) = 1

q − 1
Eq(x).

Lemma. 3.2. The two operators Dq and Dq−1 are a quantum representation of
the quantum plane algebra generated by x and y with the commutation relation
xy= qyx by putting

x→ Dq−1 and y→ Dq.

Proof:

Dq Dq−1 f (x) = Dq

(
f (x)− f (q−1x)

(1− q−1)x

)
= 1

(1− q)x

(
f (x)− f (q−1x)

(1− q−1)x
− f (qx)− f (x)

(1− q−1)qx

)
= 1

(1− q)x

(
Dq−1 f (x)− f (qx)− f (x)

(q − 1)x

)
= 1

(1− q)x
(Dq−1 f (x)− Dq f (x)).

Similarly

Dq−1 Dq f (x) = q

(1− q)x
(Dq−1 f (x)− Dq f (x)).

Then we have

Dq−1 Dq = q Dq Dq−1. ¤
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Definition 3.3. The Dq-algebra is a nonassociative algebra generated by the
operatorsJ1, J2, J3, andJ4:

J1 = α(x), J2 = Dq−1,

J3 = β(x), J4 = Dq,

with the commutation relations

J1J2 = (1− q−1)x(J2J1)J2,

J1J4 = (1− q)x(J4J1)J4,

J1J3 = J3J1,

J3J2 = (1− q−1)x(J2J3)J2,

J2J4 = q J4J2,

J3J4 = (1− q)x(J4J3)J4,

where the functionsα(x) andβ(x) are analytic functions in the variablex.

Definition 3.4. On theDq-algebra define the operatorM by

M = J1J2− J3J4

such that allq-hypergeometric orthogonal polynomialsYn(x), x 6= cos(θ ), are
eigenfunctions of the operatorM with eigenvaluesλq[n]q.

And the operatorM satisfies the following relations for any analytic function
ψ(x):

M(J1ψ(x)) = (M J1)ψ(x),

M(J3ψ(x)) = (M J3)ψ(x),

J2Mψ(x) = [( J2J1)J2− (J2J3)J4]ψ(x),

J4Mψ(x) = [( J4J1)J2− (J4J3)J4]ψ(x).

For theq-hypergeometric orthogonal polynomialsYn(x), x 6= cos(θ ), we use the
notation Q where

Q =



r − s, if Yn(x) = rϕs

a1, . . . , ar

|q; x

b1, . . . , bs



r − s− 1, if Yn(x) = rϕs

a1, . . . , ar−1, x

|q; k

b1, . . . , bs
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Also we will define three cases ofJ1 and J3 depending on the weight function
W(x, q) of Yn(x)

(1) If W(x, q) =∏k
i=1 eq( fi (x))xα

choose

J1 = −q−1(q−1x)−Q,

J3 = −1

xQ

W(qx, q)

W(x, q)
.

(2) If W(x, q) =∏k
i=1 eq( fi (x))

∏r
j=1 Eq(gj (x))

choose

J1 = 1

x

r∏
j=1

Eq(gj (q−1x))

Eq(gj (x))
,

J3 = 1

x

k∏
i=1

eq( fi (qx))

eq( fi (x))
.

(3) If W(x, q) =∏k
i=1 eq( fi (x))

∏r
j=1 Eq(gj (x))xα

choose

J1 = 1

q

r∏
j=1

Eq(gj (q−1x))

Eq(gj (x))
,

J3 = qα
k∏

i=1

eq( fi (qx))

eq( fi (x))
.

4. q-DIFFERENCE EQUATIONS OF THE q-HYPERGEOMETRIC
POLYNOMIALS Yn(x), x 6= cos(θ)

4.1. q-Laguerre Polynomial

The q-Laguerre polynomial is defined by

Lαn(x; q) = (qα+1;q)n

(q; q)n
1ϕ1

q−n

|q;−qn+α+1x

qα+1


and the weight function is

W(x;α; q) = eq(−x)xα.

ThenQ = 0 and

W(qx;α; q) = qα(1+ x)eq(−x)xα.
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Now J1 andJ3 are

J1 = −q−1,

J3 = −qα(1+ x).

Then theq-difference equation ofLαn(x; q) is

(−q−1Dq−1 + qα(x + 1)Dq)Lαn(x; q) = λq[n]q Lαn(x; q).

By equating the coefficients ofxn one gets

qα[n]q = λq[n]q,

then

λq = qα.

4.2. Stieltjes–Wigert Polynomial

The Stieltjes–Wigert polynomial is defined by

Sn(x; q) = 1

(q; q)n
1ϕ1

q−n

|q;−qn+1x

0


and the weight function is

W(x; q) = eq(−x)eq(−qx−1).

ThenQ = 0 and

W(qx; q) = xeq(−x)eq(−qx−1).

Now J1 andJ3 are

J1 = −q−1,

J3 = −x.

Then theq-difference equation ofSn(x; q) is

(−q−1Dq−1 + x Dq)Sn(x; q) = λq[n]qSn(x; q).

By equating the coefficients ofxn one gets

[n]q = λq[n]q,

then

λq = 1.
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4.3. q-Hermite II Polynomial

The q-Hermite II polynomial is defined by

hn(x; q) = i−nq−(n
2)2ϕ0

q−n, ix

|q;−qn

−


and the weight function is

W(x; q) = eq(ix)eq(−ix).

ThenQ = 1 and

W(qx; q) = (1+ x2)eq(i x)eq(−i x).

Now J1 andJ3 are

J1 = −x−1,

J3 = −(1+ x2)x−1.

Then theq-difference equation is

(−x−1Dq−1 + (1+ x2)x−1Dq)hn(x; q) = λq[n]qhn(x; q).

By equating the coefficients ofxn one gets

[n]q = λq[n]q,

then

λq = 1.

4.4. Al-Salam-Carlitz II

The Al-Salam-Carlitz II is defined by

Va
n (x; q) = (−a)nq−(n

2)2ϕ0

q−n, x

|q; qn

a

−


and the weight function is

W(x; a; q) = eq(x)eq(a−1x).

ThenQ = 1 and

W(qx; a; q) = (1− x)(a− x)

a
eq(x)eq(a−1x).
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Now J1 andJ3 are

J1 = −x−1,

J3 = − (1− x)(a− x)

a
x−1.

Then theq-difference equation ofVa
n (x; q) is(

−x−1Dq−1 + (1− x)(a− x)

a
x−1Dq

)
Va

n (x; q) = λq[n]qVa
n (x; q).

By equating the coefficients ofxn one gets

1

a
[n]q = λq[n]q,

then

λq = 1

a
.

4.5. Al-Salam-Carlitz I

The Al-Salam-Carlitz I is defined by

Ua
n (x; q) = (−a)nq(n

2)2ϕ1

q−n, x−1

|q; qx
a

0

 ,

and the weight function is

W(x; a; q) = Eq(−qx)Eq(−a−1qx).

Then

Eq(−q−1qx)Eq(−q−1a−1qx)

Eq(−qx)Eq(−a−1qx)
= (1− x)(a− x)

a
.

Now J1 andJ3 are

J1 = (1− x)(a− x)

ax
,

J3 = 1

x
.

Then theq-difference equation ofUa
n (x; q) is(

(1− x)(a− x)

ax
Dq−1 − 1

x
Dq

)
Ua

n (x; q) = λq[n]qUa
n (x; q).
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By equating the coefficients ofxn one gets

1

a
[n]q−1 = λq[n]q,

then

λq = 1

a
q1−n.

4.6. Bigq-Jacobi

The Bigq-Jacobi is defined by

Pn(x; a, b, c; q) = 3ϕ2

q−n, abqn+1, x

|q; q

aq, cq


and the weight function is

W(x; a, b, c; q) = eq(x)eq(−bc−1x)Eq(−a−1x)Eq(−c−1x).

Then

Eq(−q−1a−1x)Eq(−q−1c−1x)

Eq(−a−1x)Eq(−c−1x)
= (qa− x)(qc− x)

q2ac
,

eq(qx)eq(−qbc−1x)

eq(x)eq(−bc−1x)
= (1− x)(c− bx)

c
.

Now J1 andJ3 are

J1 = (qa− x)(qc− x)

q2acx
,

J3 = (1− x)(c− bx)

cx
.

Then theq-difference equation ofPn(x; a, b, c; q) is(
(qa− x)(qc− x)

q2acx
Dq−1 − (1− x)(c− bx)

cx
Dq

)
× Pn(x; a, b, c; q) = λq[n]q Pn(x; a, b, c; q).

By equating the coefficients ofxn one gets

1

q2ac
[n]q−1 − b

c
[n]q = λq[n]q,
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then

λq = 1− qn+1ab

qn+1ac
.

4.7. Bigq-Laguerre

The Bigq-Lagurre is defined by

Pn(x; a, b; q) = 3ϕ2

q−n, 0, x

|q; q

aq, bq


and the weight function is

W(x; a, b; q) = eq(x)Eq(−a−1x)Eq(−b−1x).

Then

Eq(−q−1a−1x)Eq(−q−1b−1x)

Eq(−a−1x)Eq(−b−1x)
= (qb− x)(qa− x)

q2ab
,

eq(qx)

eq(x)
= (1− x).

Now J1 andJ3 are

J1 = (qb− x)(qa− x)

q2abx
,

J3 = (1− x)

x
.

Then theq-difference equation ofPn(x; a, b; q) is(
(qb− x)(qa− x)

q2abx
Dq−1 − (1− x)

x
Dq

)
Pn(x; a, b; q) = λq[n]q Pn(x; a, b; q).

By equating the coefficients ofxn one gets

1

q2ab
[n]q−1 = λq[n]q,

then

λq = 1

qn+1ab
.
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4.8. Discreteq-Hermite I Polynomial

The discreteq-Hermite I polynomial is defined by

hn(x; q) = q(n
2)2ϕ1

q−n, x−1

|q;−qx

0


and the weight function is

W(x; q) = Eq(−qx)Eq(qx).

Then

Eq(−q−1qx)Eq(q−1qx)

Eq(−qx)Eq(qx)
= (1− x2).

Now J1 andJ3 are

J1 = (1− x2)

x
,

J3 = 1

x
.

Then theq-difference equation ofhn(x; q) is(
(1− x2)

x
Dq−1 − 1

x
Dq

)
hn(x; q) = λq[n]qhn(x; q).

By equating the coefficients ofxn one gets

−[n]q−1 = λq[n]q,

then

λq = −q1−n.

4.9. Little q-Jacobi Polynomial

The Littleq-Jacobi polynomial is defined by

Pn(x; a, b|q) = 2ϕ1

q−n, abqn+1

|q; qx

aq


and the weight function is

W(x;α, β|q; q) = eq(qβ+1x)Eq(−qx)xα.
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Then

Eq(−q−1qx)

Eq(−qx)
= (1− x),

eq(qqβ+1x)

eq(qβ+1x)
= (1− qβ+1x).

Now J1 andJ3 are

J1 = 1− x

q
,

J3 = (1− qβ+1x)qα.

Then theq-difference equation ofPn(x; a, b|q) is(
(1− x)

q
Dq−1 − (1− qβ+1x)qαDq

)
Pn(x; a, b|q) = λq[n]q Pn(x; a, b|q).

By equating the coefficients ofxn one gets

−1

q
[n]q−1 + qα+β+1[n]q = λq[n]q,

then

λq = qα+β+1− q−n.

4.10. Little q-Laguerre/Wall Polynomial

The Littleq-Lagurre/Wall polynomial is defined by

Pn(x; a|q) = 2ϕ1

q−n, 0

|q; qx

aq


and the weight function is

W(x;α|q; q) = Eq(−qx)xα.

Then

Eq(−q−1qx)

Eq(−qx)
= (1− x).

Now J1 andJ3 are

J1 = (1− x)

q
,

J3 = qα.
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Then theq-difference equation ofPn(x; a|q) is(
(1− x)

q
Dq−1 − qαDq

)
Pn(x; a|q) = λq[n]q Pn(x; a|q).

By equating the coefficients ofxn one gets

−1

q
[n]q−1 = λq[n]q,

then

λq = −q−n.
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